大连光分路器规格
  • 大连光分路器规格
  • 大连光分路器规格
  • 大连光分路器规格

产品描述

目前市场上主流的分路器主要基于两种技术形式:熔融拉锥型(Fused Biconical Taper, FBT)和平面光波导(PLC)型。同样的,两种技术形式孰优孰劣,这里不作评论。无论基于何种技术形式的分路器,都是基于1 x 2基本结构的级联而成。FBT的1 x 2结构是一耦合器,而PLC的是一Y分支结构。这个看似简单的Y分支构件,其实并不简单,因为分路器的性能优劣很大程度上就是由它决定的。如何设计一个性能优异的Y分支结构属于技术机密(Classified technology),这里不便讨论。这里仅就基于平面光波导技术的一个Y分支结构的分路器,即1 x 2分路器的工作原理作一简介。其实也就是从物理本质上粗略地解释为什么1 x 2分路器无论是上行,还是下行信号,其插入损耗都是3 dB。
1 x 2分路器的功能结构可以用图1(a)的框图来表示:一个单模输入波导,两个单模输出波导。中间用来分束的结构有很多种,这里只给出了3种结构:图1(b)的定向耦合器型(Directional Coupler, DC),图1(c)的无间距定向耦合器型(Zero-Gap Directional Coupler, ZGDC),以及图1(d)的模斑转换器型(Spot Size Converter, SSC)。定向耦合器型和零间距定向耦合器型输入端都只用其中一个端口,并且无间距定向耦合器型其实是多模干涉型(Multi-Mode Interference, MMI)。现行市场上热卖的PLC分路器都是SSC型的,之所以给出另外两种,是为了进行对比分析。
大连光分路器规格
熔融拉锥型产品是将两根或多根光纤进行侧面熔接而成;平面波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上形成光波导,实现分支分配功能。这两种型式的分光原理类似,它们通过改变光纤间的消逝场相互耦合(耦合度,耦合长度)以及改变光纤纤半径来实现不同大小分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制作方法简单、价格便宜、容易与外部光纤连接成为一整体,而且可以耐孚机械振动和温度变化等优点,目前成为市场的主流制造技术。
与同轴电缆传输系统一样,光网络系统也需要将光信号进行耦合、分支、分配,这就需要光分路器来实现。光分路器常用M×N来表示一个分路器有M个输入端和N个输出端。在光纤CATV系统中使用的光分路器一般都是1×2、1×3以及由它们组成的1×N光分路器。
用于PON网络的光分路器按功率分配形成规格来看,光分路器可表示为M×N,也可表示为M:N。M表示输入光纤路数,N表示输出光纤路数。在FTTx系统中,M可为1或2,N可为2、4、8、16、32、64、128等。本标准统一用M×N表示。
技术参数编辑
损耗
光分路器的插入损耗是指每一路输出相对于输入光损失的dB数,其数学表达式为:Ai=-10lg Pouti/Pin ,其中Ai是指第i个输出口的插入损耗;Pouti是第i个输出端口的光功率;Pin是输入端的光功率值。
附加损耗定义为所有输出端口的光功率总和相对于输入光功率损失的DB数。值得一提的是,对于光纤耦合器,附加损耗是体现器件制造工艺质量的指标,反映的是器件制作过程的固有损耗,这个损耗越小越好,是制作质量优劣的考核指标。而插入损耗则仅表示各个输出端口的输出功率状况,不仅有固有损耗的因素,更考虑了分光比的影响。因此不同的光纤耦合器之间,插入损耗的差异并不能反映器件制作质量的优劣。对于1N单模标准型光分路器附加损耗如下表所示:
分路数 2 3 4 5 6 7 8 9 10 11 12 16
附加损耗DB 0.2 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1.0 1.2
大连光分路器规格
光分路器按原理可以分为熔融拉锥型和平面波导型 [1] 。两种,熔融拉锥型产品是将两根或多根光纤进行侧面熔接而成;平面波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上形成光波导,实现分支分配功能。这两种型式的分光原理类似,它们通过改变光纤间的消逝场相互耦合(耦合度,耦合长度)以及改变光纤纤半径来实现不同大小分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制作方法简单、价格便宜、容易与外部光纤连接成为一整体,而且可以耐孚机械振动和温度变化等优点,目前成为市场的主流制造技术。
FBT熔融拉锥分路器(Fused Bi-conical Tap)
就是将两根(或两根以上)除去涂覆层的光纤以一定的方法靠扰,在高温加热下熔融,同时向两侧拉伸,终在加热区形成双锥体形式的特殊波导结构,通过控制光纤扭转的角度和拉伸的长度,可得到不同的分光比例。后把拉锥区用固化胶固化在石英基片上插入不锈铜管内,这就是光分路器。这种生产工艺因固化胶的热膨胀系数与石英基片、不锈钢管的不一致,在环境温度变化时热胀冷缩的程度就不一致,此种情况容易导致光分路器损坏,尤其把光分路放在野外的情况更甚,这也是光分路容易损坏得主要原因。对于更多路数的分路器生产可以用多个二分路器组成。
传输分配信号用熔融拉锥光纤分路器(Fused Fiber Splitter) 熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,并实时监控分光比的变化,分光比达到要求后结束熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作多路输出端。目前成熟拉锥工艺一次只能拉1×4以下。1×4以上器件,则用多个1×2连接在一起。再整体封装在分路器盒中。 [2]
优点
1、拉锥耦合器已有二十多年的历史和经验, 许多设备和工艺只需沿用而已, 开发经
费只有PLC的几十分之一
2、原材料只有很容易获得的石英基板, 光纤, 热缩管, 不锈钢管和少些胶, 而机器
和仪器的投资折旧费用更少1×2、1×4等低通道分路器成本低。
3、分光比可以根据需要实时监控可以制作不等分分路器。
缺点
1、损耗对光波长敏感一般要根据波长选用器件通常可使用的波长信号有限
1310+-40nm、1490+-10nm、1550+-40nmnm。
2、均匀性较差1X4标称大相差1.5dB左右1×8以上相差更大。
3、插入损耗随温度变化变化量大TDL
4、多路分路器如1×16、1×32体积比较大。
FBT分路器的封装类型
裸光纤钢管封装
0.9mm尾纤钢管封装
2.0mm尾纤ABS盒封装
3.0mm尾纤ABS盒封装
3.0mm尾纤ABS盒模块封装
标准19英寸机架封装
PLC平面波导分路器( Planar Light wave Circuit)
优点
1、损耗对传输光波长不敏感可以满足不同波长(1260-1650nm)的传输需要。
2、分光均匀可以将信号均匀分配给用户。
3、体积小(如1×32 的小尺寸可以做到4×7×50mm),可以直接安装在现有的各种交接箱内
不需特殊设计留出很大的安装空间。
4、单只器件分路通道很多可以达到32路以上。
5、多路成本低分路数越多成本优势越明显。
缺点
1、器件制作工艺复杂门槛较技术高目前芯片被国外几家公司垄断国内能够大批量封装生
产的企业也为数不多。
2、相对于熔融拉锥式分路器成本较高特别在低通道分路器方面更处于劣势。
3、不能做不同分光比的分路器只能均分。
PLC封装类型
裸纤型、机架型、模块型、Fanout型、24芯托盘、1u 托盘、大钢管900um、12芯托盘、户外接头盒型
大连光分路器规格
(2)相对于熔融拉锥式分路器成本较高,特别在低通道分路器方面更处于劣势
-/gbabicj/-

http://www.cxtbgs.com

产品推荐